## Multiple Regression Model: I

Suppose the data are generated according to

$$
y_{i}=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{K} x_{i K}+u_{i} \quad i=1 \ldots n
$$

Define
$y=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right] X=\left[\begin{array}{ccc}x_{11} & \cdots & x_{1 K} \\ \vdots & & \vdots \\ x_{n 1} & \cdots & x_{n k}\end{array}\right] \beta=\left[\begin{array}{c}\beta_{1} \\ \vdots \\ \beta_{K}\end{array}\right] u=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$
So $y \in \mathbb{R}^{n}, X \in \mathbb{R}^{n \times K}, \beta \in \mathbb{R}^{K}, u \in \mathbb{R}^{n}$
Rks:

- In many applications, the first column of $X$ is a vector of ones, so $(\forall i) x_{i 1}=1 . \quad \therefore \beta_{1}$ is an intercept.
- Wooldridge likes to label the intercept $\beta_{0}$ and he always includes it in $X$. In his notation, $k$ indicates the number of explanatory variables in addition to the intercept, so his $X$ matrix has $k+1$ columns. Be aware of this difference in notation!
:Multiple Regression Model in Matrix notation

$$
y=X \beta+u
$$

Rk: I'll often write $y_{i}=x_{i} \beta+u_{i}$ as the typical observation
: Definition of the OLS estimator $\widehat{\beta}$

$$
\left(\widehat{\beta}_{1}, \cdots \widehat{\beta}_{K}\right)^{\prime}=\arg \min _{\left(\widetilde{\beta}_{1}, \cdots \widetilde{\beta}_{K}\right)^{\prime}} \sum_{i=1}^{n}\left(y_{i}-\widetilde{\beta}_{1} x_{i 1}-\cdots-\widetilde{\beta}_{K} x_{i K}\right)^{2}
$$

or

$$
\widehat{\beta}=\arg \min _{\widetilde{\widetilde{\beta}} \in \mathbb{R}^{K}}(y-X \widetilde{\beta})^{\prime}(y-X \widetilde{\beta})
$$

## :Normal equations

$$
\sum_{i=1}^{n} x_{i j}\left(y_{i}-\widehat{\beta}_{1} x_{i 1}-\cdots-\widehat{\beta}_{K} x_{i K}\right)=0 j=1, \cdots, K
$$

or in matrix notation

$$
X^{\prime}(y-X \widehat{\beta})=0 \Leftrightarrow X^{\prime} \widehat{u}=0
$$

:Expression for $\widehat{\beta}$

$$
\begin{aligned}
X^{\prime}(y-X \widehat{\beta}) & =0 \\
& \Leftrightarrow\left(X^{\prime} X\right) \widehat{\beta}=X^{\prime} y
\end{aligned}
$$

Need to show

1. a solution always exists
2. solution is unique if $\operatorname{det}\left(X^{\prime} X\right) \neq 0 \Leftrightarrow\left(X^{\prime} X\right)$ is invertible $\Leftrightarrow$ $\left(X^{\prime} X\right)$ is nonsingular $\Leftrightarrow \operatorname{rank}\left(X^{\prime} X\right)=K \Leftrightarrow \operatorname{rank}(X)=K$.
Under any of the conditions 2 . above, we get

$$
\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

and

$$
\begin{aligned}
& \widehat{y}=X \widehat{\beta}=X\left(X^{\prime} X\right)^{-1} X^{\prime} y \equiv P y \\
& \widehat{u}=y-\widehat{y}=(I-P) y \equiv M y
\end{aligned}
$$

:Geometric interpretation of OLS
Think of $y$ as a vector in $\mathbb{R}^{n}$ and $\widetilde{y}=X \widetilde{\beta}$ as a vector in $S p(X) \subset \mathbb{R}^{n}$. The OLS problem can be written as
Find:

$$
\widehat{y}=\arg \min _{\widetilde{y} \in S p(X)}(y-\widetilde{y})^{\prime}(y-\widetilde{y})
$$

Solution: Let $\hat{y}$ denote the orthogonal projection of $y$ onto $S p(X)$, that is the vector that generates a residual $\widehat{u} \perp S p(X)$ Rks:

- $\widehat{u}$ is the vector $y-\hat{y}$
- $\widehat{u} \perp \operatorname{Sp}(X)$ means that $\hat{u}^{\prime} \widetilde{y}=0$ for all $\widetilde{y} \in \operatorname{Sp}(X)$
- $\widehat{u}^{\prime} \widetilde{y}=0 \Leftrightarrow \widehat{u}^{\prime} X \widetilde{\beta}=0$ for all $\widetilde{\beta} \in \mathbb{R}^{K} \Leftrightarrow \widehat{u}^{\prime} X=0$

1. The existence of $\hat{y}$ is geometrically obvious (for a proof use $\operatorname{Sp}(X)$ is closed or $\operatorname{Range}\left(X^{\prime}\right)=\operatorname{Range}\left(X^{\prime} X\right)$ )
2. Given that exists an orthogonal projection, it's easy to show that it solves OLS problem and is unique. Consider any $\tilde{y} \in S p(X)$. We have

$$
\begin{aligned}
y & =\widetilde{y}+\widetilde{u}=\widehat{y}+\widehat{u} \\
& \Leftrightarrow \widetilde{u}=\widehat{u}+(\widehat{y}-\widetilde{y})
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\widetilde{u}^{\prime} \widetilde{u} & =\widehat{u}^{\prime} \widehat{u}+(\hat{y}-\widetilde{y})^{\prime}(\hat{y}-\widetilde{y})+2 \widehat{u}^{\prime}(\hat{y}-\widetilde{y}) \\
& =\widehat{u}^{\prime} \widehat{u}+(\hat{y}-\widetilde{y})^{\prime}(\hat{y}-\widetilde{y}) \quad \because(\hat{y}-\widetilde{y}) \in \operatorname{Sp}(X) \\
& \geq \widehat{u}^{\prime} \widehat{u} \quad \text { with equality iff }(\hat{y}-\widetilde{y})=0
\end{aligned}
$$

## Rks:

- The orthogonal projection operator $\mathbf{P}$ is linear, i.e.

$$
\mathbf{P}\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} \mathbf{P}\left(y_{1}\right)+c_{2} \mathbf{P}\left(y_{2}\right)
$$

so given a basis, it can be represented by a matrix $P$, i.e. $\hat{y}=P y$.

- Because projections satisfy $\mathbf{P}\left(\mathbf{P}\left(y_{1}\right)\right)=\mathbf{P}\left(y_{1}\right)$, we must have $P \hat{y}=\hat{y} \Leftrightarrow P^{2}=P$ so $P$ must be idempotent
- For orthogonal projections, we get the additional property that $P=P^{\prime}$
- $M=(I-P)$ corresponds to the projection onto $S p(X)^{\perp}$, i.e. the set of vectors orthogonal to $S p(X)$.
- $P^{2}=P$ and $P=P^{\prime}$ implies that all the eigenvalues of $P$ are either 0 or 1 .


## :Back to $\widehat{\beta}$

From the properties of $\hat{y}$ above we get

1. existence of $\hat{y} \in S p(X) \Rightarrow \widehat{y}=X \widehat{\beta}$ for some $\widehat{\beta} \in \mathbb{R}^{K}$
2. If columns of $X$ are linearly independent, then

- $\widehat{\beta}$ is unique
- $P=X\left(X^{\prime} X\right)^{-1} X^{\prime}$
:Analysis of Variance
Define $M=I-P$. We have the decomposition

$$
\begin{gathered}
y=P y+M y \\
=\hat{y}+\widehat{u} \\
y^{\prime} y=\widehat{y}^{\prime} \hat{y}+\widehat{u}^{\prime} \widehat{u} \quad \text { since } \hat{y}^{\prime} \hat{u}=0 \\
\text { or } S S T_{0}=S S E_{0}+S S R_{0}
\end{gathered}
$$

where the subscript " 0 " is used to indicate "about the origin"
Define $R_{0}^{2}=S S E_{0} / S S T_{0}=1-S S R_{0} / S S T_{0}$.
Properties

- $0 \leq R_{0}^{2} \leq 1$
- $\min \widetilde{u}^{\prime} \widetilde{u} \Leftrightarrow \max R_{0}^{2}$
- Let $\theta_{0}$ denote the angle between $y$ and $\hat{y}$.

$$
\cos ^{2}\left(\theta_{0}\right)=\left[\frac{y^{\prime} \hat{y}}{\sqrt{y^{\prime} y \cdot \hat{y}^{\prime} \hat{y}}}\right]^{2}=\frac{\hat{y}^{\prime} \hat{y}}{y^{\prime} y}=R_{0}^{2}
$$

where we have used $y^{\prime} \hat{y}=(\hat{y}+\widehat{u})^{\prime} \hat{y}=\hat{y}^{\prime} \hat{y}$
We don't usually use $R_{0}^{2}$ if $X$ contains an intercept.

## :Coefficient of Determination $R^{2}$

Define

$$
A=I_{n}-\frac{1}{n} u^{\prime} \quad \text { where } t=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right] \in \mathbb{R}^{n}
$$

Rks:

- $\bar{y}=\frac{1}{n} \iota^{\prime} y$
- $A y=y-\bar{y} t$
- $A=A^{2}=A^{\prime} \quad A l=0$ and $A z=z$ if $z^{\prime} t=0$
- If $\imath \in S p(X)$, then $\imath^{\prime} \hat{u}=0$ and

$$
A \widehat{u}=\widehat{u}-\frac{1}{n} u^{\prime} \widehat{u}=\widehat{u}
$$

- $i^{\prime} \hat{u}=0 \Leftrightarrow \overline{\hat{u}}=0 \Leftrightarrow \overline{\hat{y}}=\bar{y}$

Assuming $t \in S p(X)$, we can write

$$
A y=A \widehat{y}+A \widehat{u}=A \widehat{y}+\widehat{u}
$$

Therefore,

$$
\begin{aligned}
y^{\prime} A^{\prime} A y & =\widehat{y}^{\prime} A^{\prime} A \hat{y}+\widehat{u}^{\prime} \widehat{u}+2 \hat{y}^{\prime} A^{\prime} \widehat{u} \quad \Leftrightarrow \\
y^{\prime} A y & =\widehat{y}^{\prime} A \widehat{y}+\widehat{u}^{\prime} \widehat{u} \quad \Leftrightarrow \\
S S T & =S S E+S S R
\end{aligned}
$$

where the absence of a subscript denotes "about the mean".

Define $R^{2}=$ SSE/SST
Properties (assuming $\imath \in \operatorname{Sp}(X)$ )

- $0 \leq R^{2} \leq 1$
- $\min \widetilde{u}^{\prime} \widetilde{u} \Leftrightarrow \max R^{2}$
- Let $\theta$ denote the angle between $A y$ and $A \widehat{y}$.

$$
\cos ^{2}(\theta)=\left[\frac{y^{\prime} A \hat{y}}{\sqrt{y^{\prime} A y \cdot \hat{y}^{\prime} A \hat{y}}}\right]^{2}=\frac{\hat{y}^{\prime} A \hat{y}}{y^{\prime} A y}=r_{y \hat{y}}^{2}=R^{2}
$$

Rk: For $A=I_{n}-\frac{1}{n} \imath \imath^{\prime}$, we get

$$
\begin{aligned}
(A x)^{\prime} A y & =(A x)^{\prime} y=x^{\prime}(A y) \quad \Leftrightarrow \\
\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =\sum\left(x_{i}-\bar{x}\right) y_{i}=\sum x_{i}\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

:Changing units
What happens if I change the units of measurement in
(a) the dependent variable?
(b) the independent variable?
a) Let $y_{v}=c y+a$ where $c \in \mathbb{R}$ and $a \in \operatorname{Sp}(X) \Leftrightarrow a=X \gamma$ for some $\gamma$

$$
\begin{aligned}
\widehat{y}_{v} & =P \widehat{y}_{v}=P(c y+a) \\
& =c P y+P a \quad \because \text { projection is linear } \\
& =c \widehat{y}+a \quad \because a \in S p(X)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\widehat{y}_{v} & \equiv X \widehat{\beta}_{v}=c X \widehat{\beta}+X \gamma=X(c \widehat{\beta}+\gamma) \\
& \Leftrightarrow \widehat{\beta}_{v}=c \widehat{\beta}+\gamma
\end{aligned}
$$

Using $\widehat{u}_{v}=y_{v}-\widehat{y}_{v}=c(y-\widehat{y})=c \widehat{u}$, we get

$$
\widehat{u}_{v}^{\prime} \widehat{u}_{v}=c^{2} u^{\prime} u
$$

The relationship between $R_{v}^{2}$ and $R^{2}$ can be complicated, but if $a \in S p(i)$, then $A a=0$ so

$$
R_{v}^{2}=\frac{\widehat{y}_{v}^{\prime} A \widehat{y}_{v}}{y_{v}^{\prime} A y_{v}}=\frac{c^{2} \widehat{y}^{\prime} A \widehat{y}}{c^{2} y^{\prime} A y}=R^{2}
$$

b) Let $X_{v}=X D$ where $D$ is invertible. This allows us to consider an arbitrary change of basis for $S p(X)$ as well as a change in units (special case $D=\operatorname{diag}\left(c_{1}, \cdots, c_{K}\right)$ ).
Because $D$ is invertible, any vector $z=X \lambda$ can also be written as $z=X_{v} \lambda_{v}$ and vice-versa (use $\left.z=(X D)\left(D^{-1} \lambda\right) \equiv X_{v} \lambda_{v}\right)$. Therefore, $\operatorname{Sp}\left(X_{v}\right)=\operatorname{Sp}(X)$. It follows immediately that

$$
\begin{aligned}
P_{v} y & =P y \quad \Leftrightarrow \\
X_{v} \widehat{\beta}_{v} & =X \widehat{\beta} \quad \Leftrightarrow \\
X\left(D \widehat{\beta}_{v}-\widehat{\beta}\right) & =0 \\
& \Leftrightarrow \widehat{\beta}_{v}=D^{-1} \widehat{\beta}
\end{aligned}
$$

Exercise: Show that the residual sum of squares and the $R^{2}$ are unchanged if replace the regressors $X$ with $X_{v}$.

Before completing our discussion of the algebra of OLS, I need to introduce another quick piece of matrix algebra. Definition: Let $A \in \mathbb{R}^{m x m}$. The trace of $A$ is the sum of its diagonal components, i.e.

$$
\operatorname{tr}(A) \equiv \sum_{i=1}^{m} a_{i i}
$$

Properties:

1. $(\forall c \in \mathbb{R}) \operatorname{tr}(c A)=c \cdot \operatorname{tr}(A) ; \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
2. $\operatorname{tr}(A)=\operatorname{tr}\left(A^{\prime}\right)$
3. if both products exist, $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
4. if $A$ is idempotent, $\operatorname{tr}(A)=r k(A)$
: Consequences of adding an observation
Express $X$ in terms of its rows, i.e.

$$
X=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \quad \text { where } x_{i} \in \mathbb{R}^{1 x K} \text { is the } i^{\text {th }} \text { row of } X
$$

Recall $\hat{y}=$ Py where $P=X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Define $h_{i i}$ as the $i^{t h}$ diagonal element of $P$. We have

$$
h_{i i}=\left[X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]_{i i}=x_{i}\left(X^{\prime} X\right)^{-1} X_{i}^{\prime}
$$

By definition

$$
\begin{aligned}
\sum_{i} h_{i i} & =\operatorname{tr}(P)=\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right)=\operatorname{tr}\left(I_{K}\right)=K
\end{aligned}
$$

Therefore, $\bar{h}=K / n$.
Definition: If $h_{i i}$ is 'high' (say $h_{i i}>2 \bar{h}$ ), then observation $i$ is called a leverage point.
Leverage points are observations whose explanatory variables have the potential to exert an unusually strong effect on the fitted model. To see why, it is useful to understand how the regression coefficients change if we add a new observation.

Exercise: If $A \in \mathbb{R}^{n \times n}$ is invertible, and $c \in \mathbb{R}^{n}$, then

$$
\left(A+c C^{\prime}\right)^{-1}=A^{-1}-\frac{A^{-1} c c^{\prime} A^{-1}}{1+c^{\prime} A^{-1} c}
$$

It's easy to see that

$$
X^{\prime} X=\sum_{i} x_{i}^{\prime} x_{i} \quad \text { and } X^{\prime} y=\sum_{i} x_{i}^{\prime} y_{i}
$$

Therefore

$$
\widehat{\beta}=\left(\sum_{i} x_{i}^{\prime} x_{i}\right)^{-1} \sum_{i} x_{i}^{\prime} y_{i}
$$

The following allows us to see how $\left(X^{\prime} X\right)^{-1}$ changes when we add observation $j$ to the rest of the sample:

$$
\left(\sum_{i} x_{i}^{\prime} x_{i}\right)^{-1}=\left(\sum_{i \neq j} x_{i}^{\prime} x_{i}\right)^{-1}-\frac{\left(\sum_{i \neq j} x_{i}^{\prime} x_{i}\right)^{-1} x_{j}^{\prime} x_{j}\left(\sum_{i \neq j} x_{i}^{\prime} x_{i}\right)^{-1}}{1+x_{j}\left(\sum_{i \neq j} x_{i}^{\prime} x_{i}\right)^{-1} x_{j}^{\prime}}
$$

Rk: Use this result to show that $0 \leq h_{i i} \leq 1$.

Let $\widehat{\beta}(j)$ denote the OLS estimator if we drop obs $j$ i.e.

$$
\widehat{\beta}(j)=\left(\sum_{i \neq j} x_{i}^{\prime} x_{i}\right)^{-1} \sum_{i \neq j} x_{i}^{\prime} y_{i}
$$

Using the result above, we obtain

$$
\widehat{\beta}=\widehat{\beta}(j)+\left(X^{\prime} X\right)^{-1} x_{j}^{\prime} \frac{y_{j}-x_{j} \widehat{\beta}(j)}{1-h_{j j}}
$$

So has $h_{j j}$ gets bigger, the effect of the $j^{\text {th }}$ observation becomes potentially bigger. An influential observation is one that has a big effect (not just a potentially big effect). We see that this depends on $h_{j j}$ and also $y_{j}-x_{j} \widehat{\beta}(j)$ (the error we would get forecasting the $j^{\text {th }}$ observation).
: Consequences of adding many observations
Write

$$
y=\left[\begin{array}{c}
\underline{y}_{1} \\
\underline{y}_{2}
\end{array}\right] \text { and } X=\left[\begin{array}{c}
\underline{X}_{1} \\
\underline{X}_{2}
\end{array}\right]
$$

where $\underline{y}_{s} \in \mathbb{R}^{n_{s}}$ and $\underline{X}_{s} \in \mathbb{R}^{n_{s} \times K}$ for $s=1,2$ where both $n_{s}$ are large enough that both $\underline{X}_{s}$ has full column rank. Then we can define the OLS estimators from the two subsamples as

$$
\widehat{\beta}_{1}=\left(\underline{X}_{1}^{\prime} \underline{X}_{1}\right)^{-1} \underline{X}_{1}^{\prime} \underline{y}_{1} \text { and } \widehat{\beta}_{2}=\left(\underline{X}_{2}^{\prime} \underline{X}_{2}\right)^{-1} \underline{X}_{2}^{\prime} \underline{y}_{2}
$$

When we combine the two samples, we get

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
& =\left(\underline{X}_{1}^{\prime} \underline{X}_{1}+\underline{X}_{2}^{\prime} \underline{X}_{2}\right)^{-1}\left(\underline{X}_{1}^{\prime} \underline{y}_{1}+\underline{X}_{2}^{\prime} \underline{y}_{2}\right) \\
& =\left(\underline{X}_{1}^{\prime} \underline{X}_{1}+\underline{X}_{2}^{\prime} \underline{X}_{2}\right)^{-1}\left(\left(\underline{X}_{1}^{\prime} \underline{X}_{1}\right) \widehat{\beta}_{1}+\left(\underline{X}_{2}^{\prime} \underline{X}_{2}\right) \widehat{\beta}_{2}\right)
\end{aligned}
$$

Recall that $V\left(\widehat{\beta}_{s}\right)=\sigma^{2}\left(\underline{X}_{s}^{\prime} \underline{X}_{s}\right)^{-1} \equiv H_{s}^{-1}$ where $H_{s}$ is called the precision matrix. So we can write

$$
\widehat{\beta}=\left(H_{1}+H_{2}\right)^{-1}\left(H_{1} \widehat{\beta}_{1}+H_{2} \widehat{\beta}_{2}\right)
$$

so $\widehat{\beta}$ is a precision weighted average.
: Frisch-Waugh Theorem
Suppose we write

$$
\begin{align*}
y & =X \widehat{\beta}+\widehat{u} \\
& =X_{1} \widehat{\beta}_{1}+X_{2} \widehat{\beta}_{2}+\widehat{u} \tag{*}
\end{align*}
$$

where $X_{1}$ denotes the first $K_{1}$ columns of $X$, and $X_{2}$ denotes the remaining $K_{2}$ columns (with $K_{1}+K_{2}=K$ ).
Define $M_{2}=I_{n}-X_{2}\left(X_{2}^{\prime} X_{2}\right)^{-1} X_{2}$, so for any vector $z, M_{2} Z$ gives the part of $z$ that is normal to $\operatorname{Sp}\left(X_{2}\right)$.
Premultiplying both sides of (*) by $X_{1}^{\prime} M_{2}$ gives

$$
\begin{aligned}
X_{1}^{\prime} M_{2} y & =X_{1}^{\prime} M_{2} X_{1} \widehat{\beta}_{1}+X_{1}^{\prime} M_{2} X_{2} \widehat{\beta}_{2}+X_{1}^{\prime} M_{2} \widehat{u} \\
& =X_{1}^{\prime} M_{2} X_{1} \widehat{\beta}_{1}+X_{1}^{\prime} 0+X_{1}^{\prime} \widehat{u} \\
& =X_{1}^{\prime} M_{2} X_{1} \widehat{\beta}_{1}
\end{aligned}
$$

But if $X$ has rank $K$, then $X_{1}^{\prime} M_{2} X_{1}$ must have rank $K_{1}$.

$$
\therefore \widehat{\beta}_{1}=\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} y
$$

This formula has a relatively simple interpretation.
Let $\widetilde{X}_{1}=M_{2} X_{1}$ and $\widetilde{y}=M_{2} y . \widetilde{X}_{1}$ replaces each column of $X_{1}$ with the part of it that is normal to $\operatorname{Sp}\left(X_{2}\right)$. So to compute $\widehat{\beta}_{1}$, we regress $y$ on part of $X_{1} \perp S p\left(X_{2}\right)$. Equivalently, regress part of $y \perp S p\left(X_{2}\right)$ on part of $X_{1} \perp \operatorname{Sp}\left(X_{2}\right)$.
Of course, the formula is symmetric and we can also write

$$
\therefore \widehat{\beta}_{2}=\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y
$$

Exercise: Show that if $X_{1}^{\prime} M_{2} X_{1}$ is singular, then $\exists c_{1} \neq 0$ we have $X_{1} c_{1}=X_{2} c_{2}$

The Frisch-Waugh theorem has two important uses:

1. It provides a computational trick. This was important historically and still useful when dealing with panel data sets and individual effects.
2. It provides an understanding of how OLS controls for $X_{2}$ when it estimates the partial response of $y$ to $X_{1}$. ONLY the part of $X_{1} \perp S p\left(X_{2}\right)$ is used to estimate $\widehat{\beta}_{1}$.

## Special cases:

- Suppose $X_{1}$ is a column of ones (i.e. an intercept). Then $M_{1}=I-(1 / n) \iota^{\prime}$ (which we called $A$ above). $M_{1} y$ and $M_{1} X_{2}$ are just deviations from means. So if $K_{2}=1$

$$
\begin{aligned}
\widehat{\beta}_{2} & =\left(X_{2}^{\prime} M_{1} X_{2}\right)^{-1} X_{2}^{\prime} M_{1} y \\
& =\frac{\sum\left(x_{i 2}-\bar{x}_{2}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i 2}-\bar{x}_{2}\right)^{2}}
\end{aligned}
$$

- More generally, suppose $K$ is arbitrary but still we are interested in a single coefficient. w.l.o.g., order the columns of $X$ so that it corresponds to $\beta_{1}$. Define $\widehat{r}=M_{2} X_{1}$.

$$
\widehat{\beta}_{1}=\frac{\sum \widehat{r}_{i} y_{i}}{\sum \widehat{r}_{i}^{2}}
$$

## Sampling Properties of $\widehat{\beta}$ and $\hat{\sigma}^{2}$ : Some moments

Suppose the data generation process satisfies the following assumptions:

- MLR. $1 y_{i}=\underline{x}_{i} \beta+u_{i} \quad i=1 \ldots n$
- MLR. $2\left\{\left(\underline{x}_{i}, y_{i}\right), i=1 . . n\right\}$ is a random sample
- MLR. 3 In the sample, there are no exact linear combinations among the independent variables
- MLR. $4 E\left(u_{i} \mid \underline{X}_{i}\right)=0 \quad i=1 \ldots n$
- MLR. $5 V\left(u_{i} \mid \underline{X}_{i}\right)=\sigma^{2} \quad i=1 \ldots n$

Rks: I've written $\underline{x}_{i}$ for the vector of explanatory variables corresponding to observation $i$.

Rewrite these assumptions in matrix notation:

- S1 $y=X \beta+u$
- S2 $X^{\prime} X$ is invertible
- S3 $E(u \mid X)=0$
- S4 $V(u \mid X)=\sigma^{2} I_{n}$
where we have
- SLR. $1 \Leftrightarrow$ S1
- SLR. $3 \Leftrightarrow$ S2
- SLR. 2 and SLR. $4 \Rightarrow$ S3
- SLR. 2 and SLR. $5 \Rightarrow$ S4

Define $L=\left(X^{\prime} X\right)^{-1} X^{\prime}$. Under S1 and S2,

$$
\begin{aligned}
\widehat{\beta} & =\left(X^{\prime} X\right)^{-1} X^{\prime} y \\
& =\beta+L u
\end{aligned}
$$

:First Moment of $\widehat{\beta}$

$$
\begin{aligned}
E(\widehat{\beta} \mid X) & =E(\beta+L u)=\beta+L E(u \mid X) \\
& =\beta \quad \text { by S3 }
\end{aligned}
$$

$\mathrm{RK}: E(\widehat{\beta})=E(E(\widehat{\beta} \mid X))=\beta$
:Second Moment of $\widehat{\beta}$

$$
\begin{aligned}
V(\widehat{\beta} \mid X) & =V(\beta+L u \mid X)=L V(u \mid X) L^{\prime} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} \text { by } \mathrm{S} 4
\end{aligned}
$$

From the Frisch-Waugh theorem, if we are interested in the variance of a subset of the coefficients, w.l.o.g call it $\widehat{\beta}_{1}$, we have

$$
\begin{aligned}
V\left(\widehat{\beta}_{1} \mid X\right) & \left.=V\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} y \mid X\right) \\
& =V\left(\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} u \mid X\right) \\
& =\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} X_{1}^{\prime} M_{2} V(u \mid X) M_{2} X_{1}\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} \\
& =\sigma^{2}\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1}
\end{aligned}
$$

If $\beta_{1}$ is a scalar case, we can write

$$
\sigma^{2}\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1}=\frac{\sigma^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}}{1-R_{0}^{2}}
$$

where $R_{0}^{2}$ is the $R^{2}$ about the origin from the regression of $X_{1}$ on $X_{2}$.

- Under S1-S4, $\widehat{\beta}=L y$ is BLUE, i.e. it's the Gauss-Markov estimator (conditional on $X$ ).
: First moment of $\hat{\sigma}^{2}$
Define

$$
\hat{\sigma}^{2}=\frac{\widehat{u}^{\prime} \widehat{u}}{n-K}=\frac{u^{\prime} M u}{n-K}
$$

where $M=I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}$. Note that

$$
\begin{aligned}
\operatorname{tr}(M) & =\operatorname{tr}\left(I_{n}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(X\left(X^{\prime} X\right)^{-1} X^{\prime}\right) \\
& =\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(\left(X^{\prime} X\right)^{-1} X^{\prime} X\right) \\
& =\operatorname{tr}\left(I_{n}\right)-\operatorname{tr}\left(I_{K}\right)=n-K
\end{aligned}
$$

So

$$
\begin{aligned}
E\left((n-K) \hat{\sigma}^{2} \mid X\right) & =E\left(u^{\prime} M u \mid X\right) \\
& =E\left(\operatorname{tr}\left(u^{\prime} M u\right) \mid X\right) \\
& =E\left(\operatorname{tr}\left(M u u^{\prime}\right) \mid X\right) \\
& \left.=\operatorname{tr}\left(E\left(M u u^{\prime}\right) \mid X\right)\right) \\
& =\operatorname{tr}\left(M \sigma^{2} I_{n}\right) \text { by } S 4 \\
& =\sigma^{2} \operatorname{tr}(M)
\end{aligned}
$$

Therefore, under S1-S4

$$
E\left(\hat{\sigma}^{2} \mid X\right)=\sigma^{2}
$$

## :Specification Error

Suppose you are interested in the model

$$
y=X \beta+u
$$

But instead you estimate by OLS the model

$$
y=Z \gamma+v
$$

- Let's assume $E(u \mid X, Z)=0$, and identify $\gamma$ with $E(v \mid Z)=0$. What's the relationship between $\gamma / \widehat{\gamma}$ and $\beta / \widehat{\beta}$ ?

$$
\begin{aligned}
\widehat{\gamma} & =\left(Z^{\prime} Z\right)^{-1} Z^{\prime} y \\
& =\left(Z^{\prime} Z\right)^{-1} Z^{\prime}(X \widehat{\beta}+\widehat{u}) \\
& =\left(Z^{\prime} Z\right)^{-1} Z^{\prime}(X \beta+u)
\end{aligned}
$$

Rk: The second equality says that $\widehat{\gamma}_{i}=\sum_{k=1}^{K} \widehat{\delta}_{i k} \widehat{\beta}_{k}+\widehat{\lambda}_{i}$ where $\widehat{\delta}_{i k}$ is the OLS coefficient on $Z_{i}$ from the regression of $X_{k}$ on $Z$, and $\hat{\lambda}_{i}$ is its coefficient from the regression of $\widehat{u}$.

1. From the third equality, we obtain

$$
E(\widehat{\gamma} \mid X, Z)=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X \beta
$$

2. The OLS estimator of the variance of $v$ is given by

$$
\hat{\sigma}_{v}^{2}=\frac{y^{\prime} M_{z} y}{\operatorname{tr}\left(M_{z}\right)}
$$

Therefore, assuming $V(u \mid X, Z)=\sigma^{2} I_{n}$

$$
\begin{aligned}
E\left(\hat{\sigma}_{v}^{2} \mid X, Z\right) & =\frac{E\left((X \beta+u)^{\prime} M_{z}(X \beta+u) \mid X, Z\right)}{\operatorname{tr}\left(M_{z}\right)} \\
& =\frac{\left.E\left(u^{\prime} M_{z} u \mid X, Z\right)+E\left(\beta^{\prime} X M_{z} X \beta\right) \mid X, Z\right)}{\operatorname{tr}\left(M_{z}\right)} \\
& =\sigma^{2}+\frac{\beta^{\prime} X M_{z} X \beta}{\operatorname{tr}\left(M_{z}\right)}
\end{aligned}
$$

Interpretation
A. Exclusion of relevant variables.

$$
X=\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right) Z=X_{1}
$$

1. Then

$$
\begin{aligned}
\widehat{\gamma} & =\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime}\left(X_{1} \widehat{\beta}_{1}+X_{2} \widehat{\beta}_{2}+\widehat{u}\right) \\
& =\widehat{\beta}_{1}+\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} X_{2} \widehat{\beta}_{2}
\end{aligned}
$$

Rk: If $X_{2}$ is a scalar, then this expression can be written as

$$
\widehat{\gamma}=\widehat{\beta}_{1}+\widehat{\delta} \widehat{\beta}_{2}
$$

where $\widehat{\delta}$ is the vector of OLS coefficients from the regression of $X_{2}$ on $X_{1}$.
2. The mean of the OLS estimate of $\widehat{\sigma}_{v}^{2}$ satisfies

$$
\begin{aligned}
E\left(\hat{\sigma}_{v}^{2} \mid X, Z\right) & =\sigma^{2}+\frac{\beta^{\prime} X M_{1} X \beta}{\operatorname{tr}\left(M_{1}\right)} \\
& =\sigma^{2}+\frac{\beta_{2}^{\prime} X_{2} M_{1} X_{2} \beta_{2}}{n-K_{1}} \\
& \geq \sigma^{2}
\end{aligned}
$$

- Unless $X_{1}^{\prime} X_{2}=0$, the exclusion of relevant variables will lead to OLS coefficients on $X_{1}$ that are biased, and an estimated variance of the error that tends to overestimate $\sigma^{2}$.
- Notice that if $X_{1}$ is chosen by some random mechanism that is independent of the sample data (random treatments) we can guarantee $E\left(X_{1}^{\prime} X_{2}\right)=0$.
B. Inclusion of irrelevant variables

$$
X=X_{1} \quad Z=\left(\begin{array}{ll}
X_{1} & X_{2}
\end{array}\right)
$$

1. Then

$$
\begin{gathered}
\widehat{\gamma}=\left(X^{\prime} X\right)^{-1} X^{\prime}\left(X_{1} \widehat{\beta}_{1}+\widehat{u}\right) \text { so } \\
\binom{\widehat{\gamma}_{1}}{\widehat{\gamma}_{2}}=\binom{\widehat{\beta}_{1}}{0}+\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{u}
\end{gathered}
$$

Rk: It follows immediately from $E(u \mid X, Z)=0$ that $E\left(\widehat{\gamma}_{1} \mid X, Z\right)=\beta_{1}$ and $E\left(\widehat{\gamma}_{2} \mid X, Z\right)=0$. So including irrelevant variables does not bias the OLS estimator.
2. The mean of the OLS estimate of $\widehat{\sigma}_{v}^{2}$ satisfies

$$
\begin{aligned}
E\left(\hat{\sigma}_{v}^{2} \mid X, Z\right) & =\sigma^{2}+\frac{\beta_{1}^{\prime} X_{1} M X_{1} \beta_{1}}{\operatorname{tr}(M)} \\
& =\sigma^{2}
\end{aligned}
$$

So the inclusion of irrelevant variables doesn't lead to a bias in the OLS estimator of $\sigma^{2}$.
3. The precision of the OLS estimator of the coefficients on $X_{1}$ is made worse by the inclusion of irrelevant variables.

$$
\begin{aligned}
V\left(\widehat{\gamma}_{1} \mid X, Z\right) & =\sigma^{2}\left(X_{1}^{\prime} M_{2} X_{1}\right)^{-1} \\
& \geq \sigma^{2}\left(X_{1}^{\prime} X_{1}\right)^{-1}=V\left(\widehat{\beta}_{1} \mid X, Z\right)
\end{aligned}
$$

The inequality reflects the fact that it's only the variation in $X_{1}$ that is linearly independent of $X_{2}$ that gets used to estimate $\hat{\gamma}_{1}$. If $X_{1}$ has only one column, then

$$
V\left(\widehat{\gamma}_{1} \mid X, Z\right)=\frac{V\left(\widehat{\beta}_{1} \mid X, Z\right)}{1-R_{0}^{2}}
$$

where $R_{0}^{2}$ is the $R^{2}$ about the origin from the regression of $X_{1}$ on $X_{2}$.

