
Multiple Regression Model: I

Suppose the data are generated according to
yi  1xi1  2xi2   KxiK  ui i  1. . .n

Define

y 
y1



yn

X 

x11  x1K

 

xn1  xnk

 

1



K

u 

u1



un

So y ∈ n, X ∈ nxK,  ∈ K, u ∈ n

Rks:
 In many applications, the first column of X is a vector of

ones, so ∀i xi1  1. ∴ 1 is an intercept.



 Wooldridge likes to label the intercept 0 and he always
includes it in X. In his notation, k indicates the number of
explanatory variables in addition to the intercept, so his X
matrix has k  1 columns. Be aware of this difference in
notation!

:Multiple Regression Model in Matrix notation
y  X  u

Rk: I’ll often write yi  xi  ui as the typical observation
: Definition of the OLS estimator






1,


K

′  arg min


1,


K

′
∑
i1

n

yi −

1xi1 − −


KxiK2

or

  arg min

∈K
y − X


 ′y − X






:Normal equations

∑
i1

n

xijyi −

1xi1 − −


KxiK  0 j  1,,K

or in matrix notation
X ′y − X


  0  X ′u  0

:Expression for



X ′y − X

  0

 X ′X

  X ′y

Need to show
1. a solution always exists
2. solution is unique if detX ′X ≠ 0  X ′X is invertible 

X ′X is nonsingular  rankX ′X  K  rankX  K.
Under any of the conditions 2. above, we get




  X ′X−1X ′y

and
y  X


  XX ′X−1X ′y ≡ Py

u  y − y  I − Py ≡ My
:Geometric interpretation of OLS
Think of y as a vector in n and y  X


 as a vector in

SpX ⊂ n. The OLS problem can be written as
Find:

y  arg miny∈SpX
y − y ′y − y

Solution: Let y denote the orthogonal projection of y onto
SpX, that is the vector that generates a residual uSpX
Rks:
 u is the vector y − y



 uSpX means that u ′y  0 for all y ∈ SpX
 u ′y  0  u ′X


  0 for all


 ∈ K  u ′X  0

1. The existence of y is geometrically obvious (for a proof
use SpX is closed or RangeX ′  RangeX ′X)
2. Given that exists an orthogonal projection, it’s easy to
show that it solves OLS problem and is unique. Consider
any y ∈ SpX. We have

y  y  u  y  u
 u  u  y − y

Therefore
u ′u  u ′u  y − y ′y − y  2u ′y − y

 u ′u  y − y ′y − y ∵ y − y ∈ SpX
≥ u ′u with equality iff y − y  0



Rks:
 The orthogonal projection operator P is linear, i.e.

Pc1y1  c2y2  c1Py1  c2Py2
so given a basis, it can be represented by a matrix P, i.e.
y  Py.

 Because projections satisfy PPy1 Py1, we must have
Py  y  P2  P so P must be idempotent

 For orthogonal projections, we get the additional property
that P  P ′

 M  I − P corresponds to the projection onto SpX, i.e.
the set of vectors orthogonal to SpX.

 P2  P and P  P ′ implies that all the eigenvalues of P are
either 0 or 1.



:Back to



From the properties of y above we get
1. existence of y ∈ SpX  y  X


 for some


 ∈ K

2. If columns of X are linearly independent, then



 is unique

 P  XX ′X−1X ′



:Analysis of Variance
Define M  I − P. We have the decomposition

y  Py  My
 y  u

y ′y  y ′y  u ′u since y ′u  0
or SST0  SSE0  SSR0

where the subscript “0” is used to indicate “about the origin”

Define R0
2  SSE0/SST0  1 − SSR0/SST0.

Properties
 0 ≤ R0

2 ≤ 1
 min u ′u  maxR0

2

 Let 0 denote the angle between y and y.



cos20 
y ′y

y ′y  y ′y

2


y ′y
y ′y

 R0
2

where we have used y ′y  y  u ′y  y ′y
We don’t usually use R0

2 if X contains an intercept.



:Coefficient of Determination R2

Define

A  In − 1
n 

′ where  
1


1
∈ n

Rks:
 y  1

n  ′y
 Ay  y − y 
 A  A2  A ′ A  0 and Az  z if z ′  0
 If  ∈ SpX, then  ′u  0 and

Au  u − 1
n 

′u  u

  ′u  0  u  0  y  y



Assuming  ∈ SpX, we can write
Ay  Ay  Au  Ay  u

Therefore,
y ′A ′Ay  y ′A ′Ay  u ′u  2y ′A ′u 

y ′Ay  y ′Ay  u ′u 

SST  SSE  SSR
where the absence of a subscript denotes “about the
mean”.

Define R2  SSE/SST

Properties (assuming  ∈ SpX
 0 ≤ R2 ≤ 1
 min u ′u  maxR2

 Let  denote the angle between Ay and Ay.



cos2  y ′Ay

y ′Ay  y ′Ay

2


y ′Ay
y ′Ay

 ryy
2  R2

Rk: For A  In − 1
n  ′, we get
Ax ′Ay  Ax ′y  x ′Ay 

∑xi − x yi − y  ∑xi − x yi ∑ xiyi − y 



:Changing units
What happens if I change the units of measurement in
(a) the dependent variable?
(b) the independent variable?

a) Let y  cy  a
where c ∈  and a ∈ SpX  a  X for some 

y   Py   Pcy  a
 cPy  Pa ∵ projection is linear
 cy  a ∵ a ∈ SpX

Therefore,



y  ≡ X

  cX


  X  Xc


  



  c


  

Using u   y − y   cy − y  cu, we get
u 
′ u   c2u ′u

The relationship between Rv
2 and R2 can be complicated,

but if a ∈ Spi, then Aa  0 so

Rv
2 

y 
′ Ay 

y′ Ay
 c2y ′Ay

c2y ′Ay
 R2



b) Let Xv  XD where D is invertible. This allows us to
consider an arbitrary change of basis for SpX as well as a
change in units (special case D  diagc1,,cK).
Because D is invertible, any vector z  X can also be
written as z  Xv and vice-versa (use
z  XDD−1 ≡ Xv). Therefore, SpX  SpX. It
follows immediately that

Py  Py 

Xv

  X


 

X D

 −


  0



  D−1




Exercise: Show that the residual sum of squares and the R2

are unchanged if replace the regressors X with Xv.



Before completing our discussion of the algebra of OLS, I
need to introduce another quick piece of matrix algebra.
Definition: Let A ∈ mxm. The trace of A is the sum of its
diagonal components, i.e.

trA ≡ ∑
i1

m

aii

Properties:
1. ∀c ∈  trcA  c  trA; trA  B  trA  trB
2. trA  trA ′
3. if both products exist, trAB  trBA
4. if A is idempotent, trA  rkA



: Consequences of adding an observation
Express X in terms of its rows, i.e.

X 

x1



xn

where xi ∈ 1xK is the ith row of X

Recall y  Py where P  XX ′X−1X ′. Define hii as the ith

diagonal element of P. We have
hii  XX ′X−1X ′  ii  xiX ′X−1xi

′

By definition

∑
i

hii  trP  trXX ′X−1X ′

 trX ′X−1X ′X  trIK  K



Therefore, h  K/n.
Definition: If hii is ‘high’ (say hii  2h ), then observation i is
called a leverage point.
Leverage points are observations whose explanatory
variables have the potential to exert an unusually strong
effect on the fitted model. To see why, it is useful to
understand how the regression coefficients change if we
add a new observation.

Exercise: If A ∈ nxn is invertible, and c ∈ n, then

A  cc ′−1  A−1 − A−1cc ′A−1
1  c ′A−1c



It’s easy to see that
X ′X ∑

i

xi
′xi and X ′y ∑

i

xi
′yi

Therefore


  ∑

i

xi
′xi

−1

∑
i

xi
′yi

The following allows us to see how X ′X−1 changes when
we add observation j to the rest of the sample:

∑
i

xi
′xi

−1

 ∑
i≠j

xi
′xi

−1

−
∑ i≠j xi

′xi
−1

xj
′xj ∑ i≠j xi

′xi
−1

1  xj ∑ i≠j xi
′xi

−1
xj
′

Rk: Use this result to show that 0 ≤ hii ≤ 1.



Let

j denote the OLS estimator if we drop obs j i.e.


j  ∑

i≠j

xi
′xi

−1

∑
i≠j

xi
′yi

Using the result above, we obtain

 


j  X ′X−1xj

′ yj − xj

j

1 − hjj

So has hjj gets bigger, the effect of the jth observation
becomes potentially bigger. An influential observation is
one that has a big effect (not just a potentially big effect).
We see that this depends on hjj and also yj − xj


j (the

error we would get forecasting the jth observation).



: Consequences of adding many observations
Write

y 
y

1

y
2

and X 
X 1

X 2

where y
s
∈ ns and X s ∈ nsxK for s  1,2 where both ns

are large enough that both X s has full column rank. Then
we can define the OLS estimators from the two subsamples
as


1  X 1

′ X 1
−1 X 1

′ y
1

and

2  X 2

′ X 2
−1 X 2

′ y
2



When we combine the two samples, we get

  X ′X−1X ′y
 X 1

′ X 1  X 2
′ X 2

−1X 1
′ y

1
 X 2

′ y
2


 X 1
′ X 1  X 2

′ X 2
−1X 1

′ X 1

1  X 2

′ X 2

2

Recall that V

s  2X s

′ X s
−1 ≡ Hs

−1 where Hs is called the
precision matrix. So we can write


  H1  H2−1H1


1  H2


2

so

 is a precision weighted average.



: Frisch-Waugh Theorem
Suppose we write

y  X

  u

 X1

1  X2


2 

u (*)
where X1 denotes the first K1 columns of X, and X2 denotes
the remaining K2 columns (with K1  K2  K).
Define M2  In − X2X2

′ X2−1X2, so for any vector z, M2z
gives the part of z that is normal to SpX2.
Premultiplying both sides of (*) by X1

′ M2 gives
X1
′ M2y  X1

′ M2X1

1  X1

′ M2X2

2  X1

′ M2
u

 X1
′ M2X1


1  X1

′ 0  X1
′ u

 X1
′ M2X1


1



But if X has rank K, then X1
′ M2X1 must have rank K1.

∴

1  X1

′ M2X1
−1X1

′ M2y
This formula has a relatively simple interpretation.
Let X1  M2X1 and y  M2y. X1 replaces each column of
X1 with the part of it that is normal to SpX2. So to compute
1, we regress y on part of X1SpX2. Equivalently, regress
part of ySpX2 on part of X1SpX2.
Of course, the formula is symmetric and we can also write

∴

2  X2

′ M1X2
−1X2

′ M1y

Exercise: Show that if X1
′ M2X1 is singular, then ∃ c1 ≠ 0 we

have X1c1  X2c2



The Frisch-Waugh theorem has two important uses:

1. It provides a computational trick. This was important
historically and still useful when dealing with panel data
sets and individual effects.

2. It provides an understanding of how OLS controls for X2
when it estimates the partial response of y to X1. ONLY
the part of X1SpX2 is used to estimate


1.



Special cases:
 Suppose X1 is a column of ones (i.e. an intercept). Then

M1  I − 1/n ′ (which we called A above). M1y and
M1X2 are just deviations from means. So if K2  1


2  X2

′ M1X2
−1X2

′ M1y


∑xi2 − x 2yi − y 
∑xi2 − x 22

 More generally, suppose K is arbitrary but still we are
interested in a single coefficient. w.l.o.g., order the columns
of X so that it corresponds to 1. Define r  M2X1.


1 

∑r iyi

∑r i
2



Sampling Properties of

 and 

2
:

Some moments
Suppose the data generation process satisfies the following
assumptions:
 MLR.1 yi  x i  ui i  1. . .n
 MLR.2  x i,yi, i  1. .n is a random sample
 MLR.3 In the sample, there are no exact linear

combinations among the independent variables
 MLR.4 Eui| x i  0 i  1. . .n
 MLR.5 Vui| x i  2 i  1. . .n

Rks: I’ve written x i for the vector of explanatory variables
corresponding to observation i.



Rewrite these assumptions in matrix notation:
 S1 y  X  u
 S2 X ′X is invertible
 S3 Eu|X  0
 S4 Vu|X  2In

where we have
 SLR.1S1
 SLR.3S2
 SLR.2 and SLR.4S3
 SLR.2 and SLR.5S4

Define L  X ′X−1X ′. Under S1 and S2,

  X ′X−1X ′y
   Lu



:First Moment of



E

|X  E  Lu    LEu|X

  by S3
RK: E


  EE


|X  

:Second Moment of



V

|X  V  Lu|X  LVu|XL ′

 2X ′X−1 by S4

From the Frisch-Waugh theorem, if we are interested in the
variance of a subset of the coefficients, w.l.o.g call it


1, we

have



V

1|X  VX1

′ M2X1
−1X1

′ M2y|X

 VX1
′ M2X1

−1X1
′ M2u|X

 X1
′ M2X1

−1X1
′ M2Vu|XM2X1X1

′ M2X1
−1

 2X1
′ M2X1

−1

If 1 is a scalar case, we can write

2X1
′ M2X1

−1 
2X1

′ X1
−1

1 − R0
2

where R0
2 is the R2 about the origin from the regression of

X1 on X2.

 Under S1-S4,

  Ly is BLUE, i.e. it’s the Gauss-Markov

estimator (conditional on X.



: First moment of 
2

Define


2


u ′u
n − K  u ′Mu

n − K
where M  In − XX ′X−1X ′. Note that

trM  trIn − XX ′X−1X ′

 trIn − trXX ′X−1X ′

 trIn − trX ′X−1X ′X
 trIn − trIK  n − K



So

E n − K
2
|X  Eu ′Mu|X

 Etru ′Mu|X
 EtrMuu ′|X
 trEMuu ′|X
 trM2In by S4
 2trM

Therefore, under S1-S4

E 
2
|X  2



:Specification Error
Suppose you are interested in the model

y  X  u
But instead you estimate by OLS the model

y  Z  v

 Let’s assume Eu|X,Z  0, and identify  with Ev|Z  0.
What’s the relationship between / and /


?

  Z ′Z−1Z ′y

 Z ′Z−1Z ′X

  u

 Z ′Z−1Z ′X  u
Rk: The second equality says that  i  ∑k1

K 
 ik

k 


 i

where

 ik is the OLS coefficient on Zi from the regression of

Xk on Z, and

 i is its coefficient from the regression of u.



1. From the third equality, we obtain
E|X,Z  Z ′Z−1Z ′X

2. The OLS estimator of the variance of  is given by


2
 y ′Mzy

trMz

Therefore, assuming Vu|X,Z  2In

E
2
|X,Z  EX  u ′MzX  u|X,Z

trMz


Eu ′Mzu|X,Z  E ′XMzX|X,Z

trMz

 2 
 ′XMzX

trMz



Interpretation
A. Exclusion of relevant variables.

X  X1 X2 Z  X1

1. Then
  X1

′ X1−1X1
′ X1


1  X2


2 

u



1  X1

′ X1−1X1
′ X2


2

Rk: If X2 is a scalar, then this expression can be written
as

 

1 




2

where

 is the vector of OLS coefficients from the

regression of X2 on X1.



2. The mean of the OLS estimate of 
2

satisfies

E
2
|X,Z  2 

 ′XM1X
trM1

 2 
2
′ X2M1X22

n − K1

≥ 2

 Unless X1
′ X2  0, the exclusion of relevant variables will

lead to OLS coefficients on X1 that are biased, and an
estimated variance of the error that tends to overestimate 2.

 Notice that if X1 is chosen by some random mechanism that
is independent of the sample data (random treatments) we
can guarantee EX1

′ X2  0.



B. Inclusion of irrelevant variables

X  X1 Z  X1 X2

1. Then
  X ′X−1X ′X1


1 

u so
1
2



1

0
 X ′X−1X ′u

Rk: It follows immediately from Eu|X,Z  0 that
E1|X,Z  1 and E2|X,Z  0. So including
irrelevant variables does not bias the OLS estimator.



2. The mean of the OLS estimate of 
2

satisfies

E
2
|X,Z  2 

1
′ X1MX11

trM
 2

So the inclusion of irrelevant variables doesn’t lead to a
bias in the OLS estimator of 2.



3. The precision of the OLS estimator of the coefficients
on X1 is made worse by the inclusion of irrelevant
variables.

V1|X,Z  2X1
′ M2X1−1

≥ 2X1
′ X1−1  V


1|X,Z

The inequality reflects the fact that it’s only the variation
in X1 that is linearly independent of X2 that gets used to
estimate 1. If X1 has only one column, then

V1|X,Z 
V

1|X,Z
1 − R0

2

where R0
2 is the R2 about the origin from the regression

of X1 on X2.


